Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tuncay Karakurt, ${ }^{\text {a* }}$ Muharrem Dinçer, ${ }^{\text {a }}$ Bahittin Kahveci, ${ }^{\text {b }}$ Erbil Ağar, ${ }^{\text {c }}$ Ayșen Ağar ${ }^{c}$ and Selami Sașmaz ${ }^{\text {d }}$
${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, ${ }^{\text {b }}$ Karadeniz Teknik University, Rize Arts and Sciences Faculty, Department of Chemistry, 55139 Sanmsun, Turkey, ${ }^{\text {c }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey, and ${ }^{\mathbf{d}}$ Karadeniz Teknik University, Rize Arts and Sciences Faculty, Department of Chemistry, Rize, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.096$
Data-to-parameter ratio $=10.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Benzoyl-3-methyl-4-benzylidenamino-4,5-dihydro-1,2,4-triazol-5-one

In the title molecule, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$, the benzylidenamino group is almost coplanar with the triazole ring. The dihedral angle between the triazole ring and the benzoyl phenyl ring is 58.74 (8) ${ }^{\circ}$. The molecular structure is stabilized by a C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and the crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} . . . \pi$ interactions.

Comment

The discovery of a unique property of 1,2,4-triazole derivatives, viz. the inhibition of the biosynthesis of ergosterins, has stimulated an intensive search for new active compounds (Mel'nikov \& Mil'shtein, 1986). 1,2,4-Triazoles are also very useful ligands in coordination chemistry (Bencini et al., 1985, 1987; van Koningsbruggen et al., 1995). Furthermore, condensed 1,2,4-triazoles are biologically important compounds (Kottke et al., 1993; Francis \& Gelette, 1988; Francis et al., 1988). A large number of heterocyclic compounds containing the 1,2,4-triazole ring are associated with diverse pharmacological properties, such as anti-inflammatory, fungicidal, antimicrobial and antiviral activity (Walser et al., 1991; Todoulou et al., 1994). Therefore, the crystal structure determination of the title compound, (I), was carried out.

(I)

The title molecule (Fig. 1) contains three rings, a triazole ring (A) and two phenyl rings $B(\mathrm{C} 1-\mathrm{C} 6)$ and $C(\mathrm{C} 12-\mathrm{C} 17)$. The bond lengths and angles in (I) are normal (Table 1). The triazole ring is planar and the benzylidenamino group is almost coplanar with it $\left[\mathrm{C} 8-\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 11-175.56(14)^{\circ}\right.$, $\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 11-\mathrm{C} 12 \quad 179.74(13)^{\circ}, \quad \mathrm{N} 4-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 17$ $\left.-172.79(17)^{\circ}\right]$. The dihedral angle between the triazole ring and phenyl ring C is $12.38(10)^{\circ}$. The benzoyl phenyl ring B forms a dihedral angle of $58.74(8)^{\circ}$ with ring A. The molecular and crystal structures are stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions (Table 2). A view of the molecular packing is shown in Fig. 2.

Experimental

The corresponding Schiff base (3-methyl-4-benzylideneamino-4,5-dihydro- $1 \mathrm{H}-1,2,4$-triazol-5-one; $1.01 \mathrm{~g}, \quad 0.005 \mathrm{~mol}$) in a round-

Received 5 September 2003
Accepted 24 September 2003
Online 7 October 2003
bottomed flask was dissolved in 25 ml NaOH (5\%) (Kahveci \& İkizler, 2000). To this benzoyl chloride (0.64 ml) was added dropwise and the closed reaction vessel was shaken for 0.5 h at room temperature. The product was obtained by filtration, washed with water, dried and recrystallized from ethanol. Yield: 78.60%.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=306.32$
Monoclinic, $C 2 / c$
$a=28.850(4) \AA$
$b=7.4438(5) \AA$
$c=15.3364(19) \AA$
$\beta=111.853(10)^{\circ}$
$V=3056.9(6) \AA^{3}$
$Z=8$
$D_{x}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9403 reflections
$\theta=2.9-29.4^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.73 \times 0.52 \times 0.30 \mathrm{~mm}$

Data collection

Stoe IPDS 2 diffractometer φ scans
Absorption correction: none
4262 measured reflections
2700 independent reflections
1899 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.096$
$S=0.87$
2700 reflections
265 parameters
All H -atom parameters refined
$R_{\text {int }}=0.072$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-39 \rightarrow 39$
$k=-10 \rightarrow 9$
$l=-20 \rightarrow 21$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0712 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0073(6)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

O1-C7	$1.2008(17)$	N3-N4	$1.3863(16)$
O2-C9	$1.2029(17)$	N3-C9	$1.3967(18)$
N1-C9	$1.3890(18)$	N4-C11	$1.260(2)$
N1-N2	$1.3955(16)$	C1-C7	$1.475(2)$
N1-C7	$1.4179(18)$	$\mathrm{C} 8-\mathrm{C} 10$	$1.474(2)$
N3-C8	$1.3708(18)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.467(2)$
C9-N1-C7	$127.37(12)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$114.84(12)$
N2-N1-C7	$119.74(11)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 10$	$125.23(14)$
C8-N3-N4	$119.59(11)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 10$	$123.22(13)$
N4-N3-C9	$130.59(12)$	O2-C9-N1	$130.04(13)$
C11-N4-N3	$119.34(12)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{N} 3$	$128.80(13)$
O1-C7-N1	$120.33(13)$	$\mathrm{N} 4-\mathrm{C} 11-\mathrm{C} 12$	$118.75(15)$
O1-C7-C1	$124.83(13)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C11-H6 \cdots O2	0.96 (2)	2.29 (2)	2.932 (2)	124 (1)
C5-H13..) $1^{\text {i }}$	1.02 (2)	2.55 (2)	3.320 (2)	132 (2)
C5-H13..O22 ${ }^{\text {i }}$	1.02 (2)	2.56 (2)	3.525 (2)	157 (2)
$\mathrm{C} 17-\mathrm{H} 1 \cdots \mathrm{Cg} 1^{\text {ii }}$	1.00 (2)	2.89 (2)	3.537 (2)	123 (2)
$\mathrm{C} 44-\mathrm{H} 4 \cdots \mathrm{Cg} 2^{\text {iii }}$	1.00 (3)	2.93 (3)	3.684 (3)	132 (2)
$\mathrm{C} 10-\mathrm{H} 7 \cdots \mathrm{Cg} 1^{\text {iv }}$	0.99 (3)	2.87 (2)	3.644 (2)	136 (2)
$\mathrm{C} 2-\mathrm{H} 10 \cdots \mathrm{Cg} 2^{\mathrm{V}}$	0.99 (2)	2.92 (2)	3.527 (2)	120 (1)

Symmetry codes: (i) $x, 1-y, \frac{1}{2}+z$; (ii) $-x, 1-y,-z$; (iii) $-\frac{1}{2}-x, y-\frac{1}{2},-\frac{1}{2}-z$; (iv) $-x, y, \frac{1}{2}-z ;$ (v) $-x,-y,-z . C g 1$ and $C g 2$ denote the centroids of the rings B and C, respectively.

All H atoms were located in a difference Fourier map and their positional and isotropic displacement parameters were refined. The

Figure 1
An ORTEPIII (Farrugia, 1997) plot of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The molecular packing, viewed down the b axis.
$\mathrm{C}-\mathrm{H}$ bond lengths are in the range 0.94 (2) -1.03 (2) \AA and the $U_{\text {iso }}$ values lie in the range $0.063(4)-0.154$ (10) \AA^{2}.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

References

Bencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. \& Reedijk, J. (1985). Inorg. Chem. 24, 2812-2815.

Bencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. \& Reedijk, J. (1987). J. Am. Chem. Soc. 109, 2926-2931.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Francis, J. E., Cash, W. D., Psychoyos, S., Ghai, G., Wenk, P., Friendm, R. C., Atkins, C., Warren, V., Furness, P., Hyun, J. L., Stone, G. A., Desai, M. \& Williams, M. (1988). J. Med. Chem. 31, 1014-1020.
Francis, J. E. \& Gelette, K. O. (1988). Chem. Abstr. 109, 129041n
Kahveci, B. \& İkizler, A. A. (2000). Turk J. Chem. 24, 343-351.
Koningsbruggen, P. J. van, Gatteschi, D., de Graaf, R. A. G., Haasnoot, J. G., Reedijk, J. \& Zanchini, C. (1995). Inorg. Chem. 34. 5175-5182.
Kottke, K., Kuesmstedt, H., Hagen, V., Renner, H. \& Schnitzler, S. (1993). Chem. Abstr. 99, 70757v.
Mel'nikov, N. N. \& Mil'shtein, I. M. (1986). Agrokhimiya, 6, 115.
Sheldrick, G. M. (1990). SHELXS86. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X - $A R E A$ and $X-R E D$. Stoe \& Cie, Darmstadt, Germany. Todoulou, O. G., Papadaki-Valiraki, A. E., Flippatos, E. C., Ikeda, S., De Clercq, E. (1994). Eur. J. Med. Chem. 29, 127-131.
Walser, A., Flyn, T. \& Mason, C. (1991). J. Heterocycl. Chem. 28, 1121-1125.

