organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tuncay Karakurt,^a* Muharrem Dinçer,^a Bahittin Kahveci,^b Erbil Ağar,^c Ayşen Ağar^c and Selami Şaşmaz^d

^aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, ^bKaradeniz Teknik University, Rize Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey, ^cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey, and ^dKaradeniz Teknik University, Rize Arts and Sciences Faculty, Department of Chemistry, Rize, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.038 wR factor = 0.096 Data-to-parameter ratio = 10.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Benzoyl-3-methyl-4-benzylidenamino-4,5-dihydro-1,2,4-triazol-5-one

In the title molecule, $C_{17}H_{14}N_4O_2$, the benzylidenamino group is almost coplanar with the triazole ring. The dihedral angle between the triazole ring and the benzoyl phenyl ring is 58.74 (8)°. The molecular structure is stabilized by a C– $H \cdots O$ hydrogen bond and the crystal structure is stabilized by intermolecular C– $H \cdots O$ and C– $H \dots \pi$ interactions.

Comment

The discovery of a unique property of 1,2,4-triazole derivatives, viz. the inhibition of the biosynthesis of ergosterins, has stimulated an intensive search for new active compounds (Mel'nikov & Mil'shtein, 1986). 1,2,4-Triazoles are also very useful ligands in coordination chemistry (Bencini et al., 1985, 1987; van Koningsbruggen et al., 1995). Furthermore, condensed 1,2,4-triazoles are biologically important compounds (Kottke et al., 1993; Francis & Gelette, 1988; Francis et al., 1988). A large number of heterocyclic compounds containing the 1,2,4-triazole ring are associated with diverse pharmacological properties, such as anti-inflammatory, fungicidal, antimicrobial and antiviral activity (Walser et al., 1991; Todoulou et al., 1994). Therefore, the crystal structure determination of the title compound, (I), was carried out.

The title molecule (Fig. 1) contains three rings, a triazole ring (A) and two phenyl rings B (C1–C6) and C (C12–C17). The bond lengths and angles in (I) are normal (Table 1). The triazole ring is planar and the benzylidenamino group is almost coplanar with it $[C8-N3-N4-C11 -175.56 (14)^{\circ}, N3-N4-C11-C12 179.74 (13)^{\circ}, N4-C11-C12-C17 -172.79 (17)^{\circ}]$. The dihedral angle between the triazole ring and phenyl ring C is 12.38 (10)°. The benzoyl phenyl ring B forms a dihedral angle of 58.74 (8)° with ring A. The molecular and crystal structures are stabilized by $C-H\cdots O$ and $C-H\cdots\pi$ interactions (Table 2). A view of the molecular packing is shown in Fig. 2.

Experimental

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

The corresponding Schiff base (3-methyl-4-benzylideneamino-4,5-dihydro-1*H*-1,2,4-triazol-5-one; 1.01 g, 0.005 mol) in a round-

Received 5 September 2003 Accepted 24 September 2003 Online 7 October 2003 bottomed flask was dissolved in 25 ml NaOH (5%) (Kahveci & İkizler, 2000). To this benzoyl chloride (0.64 ml) was added dropwise and the closed reaction vessel was shaken for 0.5 h at room temperature. The product was obtained by filtration, washed with water, dried and recrystallized from ethanol. Yield: 78.60%.

 $D_x = 1.331 \text{ Mg m}^{-3}$

Cell parameters from 9403

Mo $K\alpha$ radiation

reflections

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int}=0.072$

 $\theta_{\text{max}} = 25.0^{\circ}$ $h = -39 \rightarrow 39$

 $k = -10 \rightarrow 9$

 $l = -20 \rightarrow 21$

Prism, colourless $0.73 \times 0.52 \times 0.30$ mm

 $\theta = 2.9 - 29.4^{\circ}$

Crystal data

 $\begin{array}{l} C_{17}H_{14}N_4O_2\\ M_r = 306.32\\ \text{Monoclinic, } C2/c\\ a = 28.850 \ (4) \ \text{\AA}\\ b = 7.4438 \ (5) \ \text{\AA}\\ c = 15.3364 \ (19) \ \text{\AA}\\ \beta = 111.853 \ (10)^\circ\\ V = 3056.9 \ (6) \ \text{\AA}^3\\ Z = 8 \end{array}$

Data collection

Stoe IPDS 2 diffractometer φ scans Absorption correction: none 4262 measured reflections 2700 independent reflections 1899 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0712P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.096$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.87	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
2700 reflections	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$
265 parameters	Extinction correction: SHELXL97
All H-atom parameters refined	Extinction coefficient: 0.0073 (6)

Table 1

Selected geometric parameters (Å, $^{\circ}$).

O1-C7	1.2008 (17)	N3-N4	1.3863 (16)
O2-C9	1.2029 (17)	N3-C9	1.3967 (18)
N1-C9	1.3890 (18)	N4-C11	1.260 (2)
N1-N2	1.3955 (16)	C1-C7	1.475 (2)
N1-C7	1.4179 (18)	C8-C10	1.474 (2)
N3-C8	1.3708 (18)	C11-C12	1.467 (2)
C9-N1-C7	127.37 (12)	N1-C7-C1	114.84 (12)
N2-N1-C7	119.74 (11)	N2-C8-C10	125.23 (14)
C8-N3-N4	119.59 (11)	N3-C8-C10	123.22 (13)
N4-N3-C9	130.59 (12)	O2-C9-N1	130.04 (13)
C11-N4-N3	119.34 (12)	O2-C9-N3	128.80 (13)
O1-C7-N1	120.33 (13)	N4-C11-C12	118.75 (15)
O1-C7-C1	124.83 (13)		

Table 2

Hydrogen-bonding	geometry	(A,	°).
------------------	----------	-----	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
С11—Н6…О2	0.96 (2)	2.29 (2)	2.932 (2)	124 (1)
$C5-H13\cdots O1^{i}$	1.02 (2)	2.55 (2)	3.320 (2)	132 (2)
$C5-H13\cdots O2^{i}$	1.02 (2)	2.56 (2)	3.525 (2)	157 (2)
$C17-H1\cdots Cg1^{ii}$	1.00(2)	2.89 (2)	3.537 (2)	123 (2)
$C14-H4\cdots Cg2^{iii}$	1.00 (3)	2.93 (3)	3.684 (3)	132 (2)
$C10-H7\cdots Cg1^{iv}$	0.99 (3)	2.87 (2)	3.644 (2)	136 (2)
$C2-H10\cdots Cg2^{v}$	0.99 (2)	2.92 (2)	3.527 (2)	120 (1)

Symmetry codes: (i) $x, 1 - y, \frac{1}{2} + z$; (ii) -x, 1 - y, -z; (iii) $-\frac{1}{2} - x, y - \frac{1}{2}, -\frac{1}{2} - z$; (iv) $-x, y, \frac{1}{2} - z$; (v) -x, -y, -z. Cg1 and Cg2 denote the centroids of the rings B and C, respectively.

All H atoms were located in a difference Fourier map and their positional and isotropic displacement parameters were refined. The

Figure 1

An ORTEPIII (Farrugia, 1997) plot of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The molecular packing, viewed down the b axis.

C-H bond lengths are in the range 0.94 (2)–1.03 (2) Å and the U_{iso} values lie in the range 0.063 (4)–0.154 (10) Å².

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

References

Bencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. & Reedijk, J. (1985). Inorg. Chem. 24, 2812–2815.

- Bencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. & Reedijk, J. (1987). J. Am. Chem. Soc. 109, 2926–2931.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Francis, J. E., Cash, W. D., Psychoyos, S., Ghai, G., Wenk, P., Friendm, R. C., Atkins, C., Warren, V., Furness, P., Hyun, J. L., Stone, G. A., Desai, M. & Williams, M. (1988). *J. Med. Chem.* **31**, 1014–1020.
- Francis, J. E. & Gelette, K. O. (1988). Chem. Abstr. 109, 129041n
- Kahveci, B. & İkizler, A. A. (2000). Turk J. Chem. 24, 343-351.
- Koningsbruggen, P. J. van, Gatteschi, D., de Graaf, R. A. G., Haasnoot, J. G., Reedijk, J. & Zanchini, C. (1995). *Inorg. Chem.* 34. 5175–5182.
- Kottke, K., Kuesmstedt, H., Hagen, V., Renner, H. & Schnitzler, S. (1993). Chem. Abstr. 99, 70757v.
- Mel'nikov, N. N. & Mil'shtein, I. M. (1986). Agrokhimiya, 6, 115.
- Sheldrick, G. M. (1990). SHELXS86. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Todoulou, O. G., Papadaki-Valiraki, A. E., Flippatos, E. C., Ikeda, S., De Clercq, E. (1994). Eur. J. Med. Chem. 29, 127–131.

Walser, A., Flyn, T. & Mason, C. (1991). J. Heterocycl. Chem. 28, 1121-1125.